El aluminio, para protegerse de la acción de los agentes atmosféricos, se recubre de forma natural de una delgada película de óxido, esta capa de Al2O3 tiene un espesor más o menos regular del orden de 0,01 micras sobre el metal recientemente decapado y puede llegar a 0,2 ó 0,4 micras sobre metal que haya permanecido en un horno de recocido.
Para poder soldar es necesario eliminar previamente, por procedimientos químicos o mecánicos, dicha capa.
Se pueden obtener películas de óxido artificialmente mucho más gruesas y de características distintas a las de la capa natural, más protectoras, por procedimientos químicos y electrolíticos. El proceso de anodizado permite formar capas en las que el espesor puede, a voluntad, ser de algunas micras a 25/30 micras en los tratamientos de protección o decoración, llegando a las 100 micras y más por procesos de endurecimiento superficial, esto es el anodizado duro.
Si se llena una cuba con agua hecha conductora por la adición de una pequeña cantidad de ácido, de base o de sal y si en este electrolito, se dispone de un cátodo (polo negativo), inatacable (níquel o plomo) y un ánodo de aluminio, se observa un desprendimiento de hidrógeno en el cátodo y ningún desprendimiento en el ánodo.
Se observa, por otra parte, que el ánodo de aluminio, se ha recubierto de una película de alúmina. El oxígeno procedente de la disociación electrolítica del agua ha sido utilizado para oxidar el aluminio del ánodo; de aquí la expresión «Oxidación anódica» anteriormente utilizada y sustituida actualmente por el término «Anodizado». La naturaleza del electrolito tiene una importancia capital sobre los fenómenos que se desarrollan en la superficie anódica.
Se pueden señalar dos tipos de reacciones anódicas, que presentan variantes:
La naturaleza del metal base (aluminio no aleado de diversas purezas y aleaciones) tiene una importancia capital sobre los resultados que se consiguen y los medios a utilizar para obtenerlos.
1. EL MECANISMO DE OXIDACIÓN DISOLUCIÓN
Es necesario recordar de la teoría de formación de capas de óxido porosas, los dos factores esenciales siguientes:
2. FORMACIÓN DE CAPAS POROSAS
Si se oxida una pieza de aluminio en una solución que tenga una acción disolvente sobre la capa de alúmina, se observa que la intensidad de la corriente, para una tensión determinada, disminuye muy rápidamente pero se estabiliza en seguida a un nivel más elevado. Después de los primeros segundos de la electrólisis, se forma una verdadera capa barrera, la cual tiende hacia el valor límite de 14 A/V.
El óxido formado en este estado consiste en una alúmina anhidra, en estado amorfo (Al2O3) habiéndose descubierto en los últimos tiempos que esta capa está constituida por un apilamiento de células hexagonales yuxtapuestas, en las que, precisando más, el centro será de alúmina amorfa poco resistente a los ácidos, mientras que la periferia está formada por alúmina cristalina muy resistente a los ácidos. Aparecen entonces en la superficie de la capa barrera, una multitud de puntos de ataque como consecuencia del efecto de disolución de la película por el electrolito que se produce en el centro de las células de alúmina y que constituye el comienzo de los poros.
Cada punto de ataque puede ser considerado como una fuente de corriente a partir de la cual se va a desarrollar una campo de potencial esférico; los iones que se presentan a la separación óxido, suministran el oxígeno naciente que transforma en óxido la porción de esfera de metal correspondiente; simultáneamente, la acción de disolución continúa manifestándose en la base del poro, tendiendo a disminuir el espesor de la capa barrera en que se prolonga; el poro se ahonda, los iones penetran preferencialmente, producen calor y tienden a favorecer la disolución, produciendo así un frente de avance hemisférico de la célula que se desarrolla, por lo tanto, del exterior al interior del metal a partir del fondo de los poros.
Entre los diferentes sistemas de anodizado seleccionamos destacamos dos de los más comerciales: anodizado de protección y anodizado duro.
1- ANODIZADO DE PROTECCION
El esquema de un proceso de anodizado partiendo de un perfil o una chapa podríamos representarlo siguiendo los siguientes pasos:
Otros dan lugar a una combinación química con el aluminio, como los colorantes a base de complejos metálicos, los colorantes diazo y los colorantes básicos. Estos últimos exigen ser tratados con substancias colágenas y son poco utilizados porque su resistencia a la luz es débil.
Se emplea para aplicaciones generales que se quieran colorear y que no estén expuestas a la intemperie.
Empleada en aplicaciones generales que requieran colores sólidos y que vayan a estar a la intemperie.
Para aplicaciones en arquitectura, es indispensable colmatar en agua muy pura. Prácticamente con agua desmineralizada y hasta desionizada. El procedimiento más utilizado para la desmineralización es el intercambio aniónico y catiónico con resinas especiales cambiadoras de iones. Se trata de conseguir un doble cambio de iones (instalación de dos cuerpos) y no de un simple ablandamiento del agua que, por transformación de los elementos insolubles en sales solubles, corre el peligro de producir cuerpos nocivos para la calidad del colmatado o fijado. La temperatura del agua viene dada por la temperatura de ebullición (en la práctica 97 a 100º C) con el fin de que se produzca la hidratación de forma muy lenta al contacto con las moléculas de agua a baja temperatura. El pH del baño es aconsejable mantenerlo entre 5,5 y 6,5. El reajuste se hace por medio de sosa, carbonato de sosa o ácidos sulfúricos, acéticos y bóricos.
2- ANODIZADO DURO
Con el anodizado pueden obtenerse capas considerablemente más duras que las clásicas (y en particular más duras que las que se obtienen en medio sulfúrico-oxálico) en un medio sulfúrico puro, con la condición de que los porcentajes de disolución sean reducidos a un valor extremadamente pequeño, lo suficiente para permitir el paso de los iones en los poros, que se convierten en finísimos canales. Se obtienen estos resultados anodizando a muy baja temperatura (0º C) en un medio electrolítico de 10 a 15% de ácido sulfúrico, con una densidad de corriente fuerte (3 A/dm2). La tensión, que será al principio de 10 V puede llegar a ser de 80 a 100 V según la naturaleza de la aleación. Es necesario un enérgico agitado con una refrigeración eficaz. Se pueden obtener así capas muy espesas a una velocidad de 50 micras / hora. Las capas que actualmente se consiguen son de alrededor de 150 micras, según el proceso y la aleación. La dureza de estas capas es comparable a la del cromo-duro, su resistencia a la abrasión y al frotamiento es considerable. Su utilización para piezas mecánicas se extiende cada vez más debido al mayor conocimiento del aluminio, de sus características mecánicas y de sus nuevas aplicaciones. Puesto que se trata, en general, de piezas cuyas tolerancias dimensionales son estrechas, es necesario tener en cuenta, en el mecanizado, el crecimiento de las cotas, que llega a ser del 50% del espesor efectivo de la capa.
Todas las aleaciones son susceptibles del anodizado duro, salvo las que contienen cobre, porque éste tiende a disolverse a pesar de la baja temperatura y perturba el tratamiento.
Las capas duras se obtienen a costa de una merma de flexibilidad, que limita en su utilización a aquellas aplicaciones en que no vayan a sufrir choques térmicos importantes, porque la película se rompería bajo el efecto de las dilataciones fuertes.
Estas capas no son susceptibles de ser colmatadas (fijadas) con agua hirviendo por las mismas razones. Pueden, por el contrario, ser impregnadas de cuerpos grasos y lubricantes.
_Propiedades del anodizado duro | Entre otras podemos destacar las siguientes:
PROCEDIMIENTO ANESDUR
Para conservar toda la capacidad de la alúmina, es necesario utilizar un electrolito de débil actividad química a temperaturas bajas con lo que se limita la redisolución de la película formada. El anodizado duro se aplica normalmente sobre aleaciones con contenidos limitados de aleantes. El sistema Anesdur permite obtener capas superiores a 150 micras con aleaciones de aluminio que contengan:
_Hasta un 6% de Mg (Magnesio)
_Hasta un 5% de Cu (Cobre)
_Hasta un 8% de Zn (Cinc)
_Hasta un 13% de Si (Silicio)
Debido a la gruesa capa que se puede conseguir con este procedimiento, a la vez de las características mecánicas de la capa, se pueden recuperar piezas que por algún defecto se hayan desgastado.
Las aleaciones que tienen una buena aptitud para el anodizado están perfectamente definidas en las páginas correspondientes. Es muy importante a la hora de seleccionar el material para un anodizado duro, verificar la pieza que se vaya a mecanizar y seleccionar la aleación también en función de sus características y resistencia mecánica.